
Scaling behaviour of an extended Eden model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 653

(http://iopscience.iop.org/0305-4470/27/3/010)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 27 (1994) 653-658. Printed in the UK 

Scaling, behaviour of an extended Eden model 

G C Barker and M J Grimson 
AFRC Institute of Food Research, Norwich Research Park Colney, Noruich NR4 IUA, 
UK 

Received 2 August 1993 

Abslract. Computer simulations of cluster growth have been performed using an extended 
version ofthe Eden model. The scaling exponents for the surface width depend on the value 
of a parameter q which determines the extent of cluster relaxation. This model has a 
particular relevance to the growth of bacterial colonies in nutrient-rich environments. 

The Eden model (Eden 1961) is a simple sequential model for the stochastic growth of 
compact clusters. In this model each new element of a cluster is added at a growth site 
that is chosen, with equal probability, from a list of all the possible growth sites. The 
possible growth sites are defined, at each time, by a microscopic rule for cluster expan- 
sion which, in general, identifies sites that are on the cluster edge. The list of possible 
growth sites reflects the instantaneous shape of the cluster. 

Eden clusters are compact in all space dimensions (Richardson 1973) but their 
surfaces have a self-fine fractal geometry (e.g. see Mandelbrot 1982, Sander 1992). 
Interest has focused on the non-trivial scaling properties of the cluster surfaces and 
computer simulation methods have been used extensively to examine the interfacial 
properties of lattice-based Eden clusters (Plischke and Racz 1984, Jullien and Botet 
1985a, b). Jullien and Botet (1985a) clearly identify three microscopically distinct ver- 
sions of the Eden growth process, labelled A, B and C, and show that they all have 
similar scaling behaviours with a finite size (or roughening) exponent a =0.50%0.02 
and a dynamic exponent p=O.3OiO.O3 (see below for definitions). Further versions of 
the model, which differ only by small modifications of the microscopic rules, are 
expected to have identical scaling. In  this sense the Eden model is representative of a 
large class of irreversible, interfacial growth processes which includes~ processes 
described by continuum equations such as the one proposed by Kardar el al(l986). 

Applications of Eden-like models are extensive and varied. They include crystal 
growth (Langer 1980), the build up of granular deposits (Jullien et QI 1992), and the 
proliferation of cancer cells (Williams and Bjerknes 1972). However, the original Eden 
model was proposed as a lattice-based representation for the development of bacterial 
colonies. Unfortunately, in this context, the Eden model is of limited validity since, in 
a bacterial colony, cell division may take place within the colony, away from the surface, 
and it may be accompanied by structural relaxations. However, the form of many 
bacterial colonies does suggest the action of a non-equilibrium, Eden-like growth 
process (Ben-Jacob ef al1992).~ (An exception occurs in nutrient-limited regimes when 
growth is controlled by a diffusion process and colonies have fractal structures 
(Ohgiwari et al 1992).) 
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Recently, Vicsek et al(1990) have examined, using digitized photographs, the surface 
of a quasi-( 1 + I)-dimensional colony of Escherichia coli grown on a nutrient-rich agar 
substrate. They found that the leading edge of the colony had a self-afiine geometry 
but the scaling behaviour was not Eden-like and had a finite sue exponent a > i. This 
observation has prompted an examination of an Eden-like lattice model of cluster 
growth that contains additional features to mimic, more closely, the growth of real 
bacterial colonies. This model incorporates, in a simple way, both the division of cells 
at locations, in a finite-sized zone, beneath the cluster surface and the instantaneous 
relaxation of the cluster structure surrounding a site of cell division. Both direct and 
indirect experimental evidence supports the existence of a finite-sized zone of actively 
dividing cells beneath the surface of bacterial colonies. First, photographic observations 
of immobilized colonies (Parker 1993, Shapiro 1987) often show concentric regions 
within the colony, which advance with the colony surface, that contain cells with differ- 
ent levels of metabolic activity. Second, examinations of surface colonies using micro- 
electrodes (Wimpenny and Coombs 1983, Fraleigh and Bungay 1986, Robinson et a1 
1991) show that the local concentrations of oxygen, nutrient and organic acids, which 
control the cell growth rate, are strong functions of position inside the colony. The 
relaxation processes, which occur concurrently with the growth and division of one cell 
in a group of cells, are substantially unquantified. For very small groups of E. coli cells 
Shapiro and Hsu (1989) have shown that rod-like cells favour side-by-side alignments 
following divisions, but these observations cannot easily be extrapolated to describe 
the correlations which must exist in large collections of cells which have polydisperse 
shapes. In the extended Eden model, described below, relaxations are restricted to the 
synchronous motion of a train of neighbouring cells. 

Computer simulations have been performed, on a square lattice, in a (1 + 1)-dimen- 
sional strip geometry with size L. Planes at y=O and y = L  are periodic boundaries and 
the strip is infinite in the x-direction. Initially all the lattice sites with x90 are occupied 
and all those with x>O are empty. At each time step an occupied lattice site Y is chosen 
randomly. Then, if there are any unoccupied sites, r', such that r-r'=sk, where k is a 
lattice vector and s<q, the site Y becomes, momentarily, doubly occupied. This double 
occupancy is then relaxed by the occupation of a site chosen at random from the set 
of unoccupied sites r' for which Ir-r'l is a minimum. In most cases this set has only 
one member. This growth process m i y  be pictured in terms of the doubling of the cell 
at r combined with the relaxation of surrounding cells onto a point of structural ineffi- 
ciency inside the cluster. The relaxation is constructed from the simultaneous motions 
of a train of neighbouring cells, in the direction of least resistance, with a maximum 
train length q. Note that for q= 1 this growth process maps onto the model C Eden 
process defined by Jullien and Botet (1985a). 

The growth process leads to a compact cluster with an irregular, rough surface. The 
edge of a typical cluster with q=4 and L=96 is shown in figure 1. At any time the 
surface of the cluster may be defined by a set of heights, h ( y j ) ,  1 <i<L.  The heights 
h ( y ; )  represent the extension of the cluster in the x-direction at a lateral point y j .  For 
a cluster with constant density, the mean height 

ho=L-' 1 h(y;) (1) 
(i-1.L) 

is proportional to the number of cell divisions. For a particular value of ho, the standard 
deviation of the heights 

/r 1 
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Figure 1. The edge of a typical cluster. obtained from the extended Eden model with 
4'4, in a strip with L=96. 

is a representation of the surface roughness, and this has a scaling form 

o(L, ho)=L'f(hoL-? 

-h$ ho << Lz ( 3 4  

-La ho>>Lz (3b) 
wheref(x) is a scaling function and z = a / p .  This picture describes a surface with a 
width that initially increases and then, after a time which depends on the strip width 
L, reaches a saturated value. In figure 2 we have plotted the logarithm of the steady- 
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Figure 2. A double logarithmic plot of the squared, steady-state surface width against the 
strip size, L, for extended Eden growth with 9'2.4. 8 ( x  , 0. e). Straight lines are best 
fits in the scaling regimes. The data sets have been shifted to the left by log(q). 
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state surface widths (squared) against the logarithm of the strip widths for simulations 
with q = 2 , 4  and 8. The data correspond to strip widths 16$L$512 and, in each case, 
the points represent mean results from an ensemble between 10 and 1000 independent 
realizations. Error bars are indicated for selected points and, for clarity, the data sets 
have been shifted to the left by log(q). For the largest strip widths the final clusters 
each contain in excess of 8 x IO6 particles. In figure 2 the straight lines indicate a scaling 
regime with a=0.4910.03, 0.45f0.03 and 0.42f0.03 for q=2, 4 and 8, respectively. 
These results show that the extended Eden model has a scaling behaviour that is clearly 
distinct from that of the traditional lattice Eden model. This deviation is also apparent 
for the dynamic exponent /3. Simulations with size L=384 show that, for small ho, the 
surface width has a well defined power-law dependence on & with p=0.27f0.03, 
0.2210.02 and 0.2210.02 for q=2, 4 and 8, respectively. 

Thus, growth from beneath the surface of an expanding cluster leads to an interface 
that roughens slowly compared to one that is driven by a simple surface addition 
process. For the extended model z z 2  and the temporal spread of height fluctuations 
is diffusive. This is in contrast to the superdiffusive behaviour of pure Eden and ballistic 
deposition models where 2<2. In addition, in the steady state of the extended Eden 
model, the fluctuations of the heights are less correlated along the surface than in the 
case of pure ‘deposition’, i.e. in the extended model the surface is less ‘rough’. The 
results are currently insufficient to establish the precise dependence of the exponents 
on the parameter q but they clearly establish a qualitative change, in an observable 
property of the cluster morphology, that arises as a result of the subsurface growth. 

The average Green’s function, g(r-U’), for the steady-state growth in the extended 
Eden model has also been measured. This function is largely independent of the system 
size and geometry, and it represents, quite generally, the probability that an unoccupied 
site at I’ becomes occupied at the same time as a new particle is introduced at site r. 
Figure 3 shows a representation ofg(r-r’) for extended Eden growth with q=8. The 
dark bars give the probability histogram for relaxation in the lateral direction. This is 
a steadily decreasing function of the distance r. Light bars show the corresponding 
histogram for relaxation in the direction of the growth. This function has a well defined 
minimum, at a separation of two lattice units, and rises steadily for 39rG8.  There is 
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Figure 3. The average Green’s function for 
extendedEdengrowth withq=S.Thedarkban 
correspond to relaxations in the lateral 
direction and light bars correspond to relax- 
ations in the  growth^ direction. I is the separa- 
tion between the growth site and the OCCUDied I 

r site. 
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also a finite probability (-0.002), not represented in figure 3, that relaxation occurs in 
the opposite direction to the growth. 

Figure 3 shows clearly that the relaxation mechanism effecti,vely promotes growth 
from sites that are not surface sites. The probability of growth increases with the 
distance beneath the surface because the number, m, of equally weighted, growth sites 
increases with the depth through the surface profile. Simulations with q>cr(L, CO) 

confirm that g(r)-  constant for r>cr(L, m). The average.%reen’s function may thus 
be used in a numerical scheme to construct, directly, clusters in different geometries. 
Direct comparisons, between lattice-based simulation results for g(r) and real colony 
shapes, are, at this stage, unprofitable. However, there is some evidence (Shapiro and 
Hsu 1989) that colony morphologies may be indicative of the underlying characteristic 
relaxation processes. 

The observations above do not account for the large value of a measured by Vicsek 
et al. However, note that the image analysis made by Vicsek et af quantifies the scaling 
behaviour for the leading edge of a three-dimensional surface colony. The growth of 
colonies of E. coli includes a component of front propagation that is normal to the 
planar substrate. Preliminary investigations indicate that a does not increase above 0.5 
as a result of including this element of the growth process. Parallels with more general 
stochastic growth modelling suggest ,several microscopic mechanisms which may lead 
to enhanced roughening, and hence larger values of a ,  but these do not yet have clear 
interpretations in terms of bacterial colony development. First the introduction of power 
law noise or quenched disorder into the growth process may lead to isolated surface 
abnormalities, such as large steps, and hence to larger values for the~roughening expon- 
ent (Csahok et nl 1993). Secondly, and more likely, other relaxation processes such as 
the surface diffusion of cells, leads to rougher interfaces. It is hoped to include some 
of these elements into future simulations. 

The development of a colony is one expression of the growth of a bacterial popula- 
tion and, in general, the form of a colony reflects a, more fundamental, underlying 
growth process for the bacteria. The complexity of multicellular structures and the 
adaptability of living microorganisms makes the correlation between form and growth 
non-trivial. However, the model introduced above highlights a particular feature of 
colony development, an active growth zone, and establishes its consequences in terms of 
an observable property of the dynamics, namely the scaling behaviour of the interfacial 
structure. This correlation is a constraint on the range of biological activity that may 
lead to observed colony morphologies and it establishes fundamental, transferable 
details of the processes which constitute colony growth. In practical applications, such as 
the contamination of food by pathogenic microorganisms, the details of the population 
growth in complex environments are paramount. These details also depend on the 
fundamental processes which underlie the growth. At this stage our analysis is only semi- 
quantitative but our results are sufficiently complete to encourage closer examinations of 
the surfaces of ‘bacterial colonies. 
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